
Module 4 E-Content Prepared By Dr. K Rajendra Prasad

1. What is Classification and Prediction?

Classification and prediction are two forms of data analysis that can be used to extract models

describing important data classes or to predict future data trends.

Whereas classification predicts categorical (discrete, unordered) labels, prediction models continuous

valued functions.

Example of classification:

 We can build a classification model to categorize bank loan applications as either safe or risk.

Example of prediction:

Regression analysisis a statistical methodology that is most often used for numeric prediction.

a prediction model to predict the expenditures in dollars of potential customers on computer

equipment given their income and occupation.

2. What is data classification ?

Data classification is a two-step process.

In the first step, a classifier is built describing a predetermined set of data classes or concepts. This is

the learning step (or training phase), where a classification algorithm builds the classifier by analyzing

or “learning from” a training set made up of database tuples and their associated class labels. A tuple,

X, is represented by an n-dimensional attribute vector, X = (x1, x2,..., xn), depicting n measurements

made on the tuple from n database attributes, respectively, A1, A2,..., An.

Each tuple, X, is assumed to belong to a predefined class as determined by another database attribute

called the class label attribute.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Because the class label of each training tuple is provided, this step is also known as supervised

learning.

It contrasts with unsupervised learning (or clustering), in which the class label of each training tuple

is not known, and the number or set of classes to be learned may not be known in advance

In the second step (Figure(b)), the model is used for classification. Test set is used, made up of test

tuples and their associated class labels. These tuples are randomly selected from the general data set.

The accuracy of a classifier on a given test set is the percentage of test set tuples that are correctly

classified by the classifier (is called as classification accuracy)

3. Issues regarding to Classification and Prediction

A. Preparing the Data for Classification and Prediction:

The following pre-processing steps may be applied to the data to help improve the accuracy,

efficiency, and scalability of the classification or prediction process.

Data cleaning: This refers to the preprocessing of data in order to remove or reduce noise (by applying

smoothing techniques, for example) and the treatment of missing values (e.g., by replacing a missing

value with the most commonly occurring value for that attribute, or with the most probable value

based on statistics)

Relevance analysis: Many of the attributes in the data may be redundant. Correlation analysis can be

used to identify whether any two given attributes are statistically related.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Data transformation and reduction: The data may be transformed by normalization, particularly

when neural networks or methods involving distance measurements are used in the learning step.

Normalization involves scaling all values for a given attribute so that they fall within a small specified

range, such as −1.0 to 1.0, or 0.0 to 1.0

B. Comparing Classification and Prediction Methods

Accuracy: The accuracy of a classifier refers to the ability of a given classifier to correctly predict the

class label of new or previously unseen data (i.e., tuples without class label information).

Speed: This refers to the computational costs involved in generating and using the given classifier or

predictor.

Robustness: This is the ability of the classifier or predictor to make correct predictions given noisy

data or data with missing values.

Scalability: This refers to the ability to construct the classifier or predictor efficiently given large

amounts of data.

Interpretability: This refers to the level of understanding and insight that is provided by the classifier

or predictor. Interpretability is subjective and therefore more difficult to assess.

4. Bayesian Classification

Bayes’ Theorem:

Let X be a data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by

measurements made on a set of n attributes.

Let H be some hypothesis, such as that the data tuple X belongs to a specified class C. For classification

problems, we want to determine P(H|X), the probability that the hypothesis H holds given the

“evidence” or observed data tuple X.

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned on X.

In contrast, P(H) is the prior probability, or a priori probability, of H

The posterior probability, P(H|X), is based on more information (e.g., customer information) than the

prior probability, P(H), which is independent of X.

Bayes’ theorem is useful in that it provides a way of calculating the posterior probability, P(H|X), from

P(H), P(X|H), and P(X). Bayes’ theorem is P

P(H|X) = P(X|H) P(H) / P(X)

Naïve Bayesian Classification

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is

represented by an n-dimensional attribute vector, X = (x1, x2,..., xn), depicting n

measurements made on the tuple from n attributes, respectively, A1, A2,..., An.

2. Suppose that there are m classes, C1, C2,..., Cm. Given a tuple, X, the classifier will predict that

X belongs to the class having the highest posterior probability, conditioned on X.

P(Ci |X) > P(Cj |X) for 1 ≤ j ≤ m, j is not equal to i.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Thus we maximize P(Ci |X). The classCi for which P(Ci |X) is maximized is called the maximum

posteriori hypothesis.

By Bayes’ theorem , P(Ci |X) = P(X|Ci) P(Ci) / P(X) .

3. As P(X) is constant for all classes, only P(X|Ci) P(Ci) need be maximized

4. Given data sets with many attributes, it would be extremely computationally expensive to

compute P(X|Ci).

(a) If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ci in D having the value

xk for Ak, divided by |Ci,D|, the number of tuples of class Ci in D.

(b) A continuous-valued attribute is typically assumed to have a Gaussian distribution with a

mean µ and standard deviation σ, defined by

Example Problem- Bayesian Classification

The training data are in Table 6.1. The data tuples are described by the attributes age, income,

student, and credit rating.

 The class label attribute, buys computer, has two distinct values (namely, {yes, no}).

Let C1 correspond to the class buys computer = yes and

C2 correspond to buys computer = no. The tuple we wish to classify is X = (age = youth, income =

medium, student = yes, credit rating = fair)

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

We need to maximize P(X|Ci)P(Ci), for i = 1, 2. P(Ci), the prior probability of each class, can be

computed based on the training tuples:

P(buys computer = yes) = 9/14 = 0.643

P(buys computer = no) = 5/14 = 0.357

To compute PX|Ci), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys computer = yes) = 2/9 = 0.222

P(age = youth | buys computer = no) = 3/5 = 0.600

P(income = medium | buys computer = yes) = 4/9 = 0.444

 P(income = medium | buys computer = no) = 2/5 = 0.400

P(student = yes | buys computer = yes) = 6/9 = 0.667

 P(student = yes | buys computer = no) = 1/5 = 0.200

P(credit rating = fair | buys computer = yes) = 6/9 = 0.667

P(credit rating = fair | buys computer = no) = 2/5 = 0.400

P(X|buys computer = yes) =

 P(age = youth | buys computer = yes) × P(income = medium | buys computer = yes) × P(student =

yes | buys computer = yes) × P(credit rating = fair | buys computer = yes)

= 0.222×0.444×0.667×0.667 = 0.044.

Similarly,

P(X|buys computer = no) = 0.600×0.400×0.200×0.400 = 0.019

To find the class, Ci , that maximizes P(X|Ci)P(Ci),

we compute

P(X|buys computer = yes)P(buys computer = yes) = 0.044×0.643 = 0.028

P(X|buys computer = no)P(buys computer = no) = 0.019×0.357 = 0.007

Therefore, the naïve Bayesian classifier predicts buys computer = yes for tuple X.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

5. Decision Tree Classification

Decision tree induction is the learning of decision trees from class-labeled training tuples.

A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a

test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal

node) holds a class label.

Fig. Decision Tree- Example

It represents the concept buys computer, that is, it predicts whether a customer at All Electronics is

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes are denoted

by ovals.

“How are decision trees used for classification?”

Given a tuple, X, for which the associated class label is unknown, the attribute values of the tuple are

tested against the decision tree. A path is traced from the root to a leaf node, which holds the class

prediction for that tuple.

Decision Tree Induction Algorithm:

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates

a given data partition, D, of class-labeled training tuples into individual classes.

1. Information gain
Let node N represent or hold the tuples of partition D. The attribute with the highest information gain

is chosen as the splitting attribute for node N. This attribute minimizes the information needed to

classify the tuple in the resulting partitions.

Information gain is defined as the difference between the original information requirement (i.e., based

on just the proportion of classes) and the new requirement (i.e., obtained after partitioning on A).

That is,

 Gain(A) = Info(D)−InfoA (D).

Example of Information Gain

Consider the Table 6.1

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

2. Gain ratio

 The gain ratio is defined as

GainRatio(A) = Gain(A) / SplitInfo(A)

3. Gini index

the Gini index measures the impurity of D, a data partition or set of training tuples, as

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Example:

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training data due to

noise or outliers. Tree pruning methods address this problem of overfitting the data. Such methods

typically use statistical measures to remove the least reliable branches.

In the prepruning approach, a tree is “pruned” by halting its construction early. Upon halting, the node

becomes a leaf. The leaf may hold the most frequent class among the subset tuples or the probability

distribution of those tuples.

When constructing a tree, measures such as statistical significance, information gain, Gini index, and

so on can be used to assess the goodness of a split. If partitioning the tuples at a node would result in

a split that falls below a prespecified threshold, then further partitioning of the given subset is halted.

The second and more common approach is postpruning, which removes subtrees from a “fully grown”

tree. A subtree at a given node is pruned by removing its branches and replacing it with a leaf.

Example:

Suppose that the most common class within this subtree is “class B.” In the pruned version of the tree,

the subtree in question is pruned by replacing it with the leaf “class B.

Scalability and Decision Tree Induction

More recent decision tree algorithms that address the scalability issue have been proposed.

Algorithms for the induction of decision trees from very large training sets include SLIQ and SPRINT,

both of which can handle categorical and continuous valued attributes. Both algorithms propose pre

sorting techniques on disk-resident data sets that are too large to fit in memory. Both define the use

of new data structures to facilitate the tree construction.

SLIQ

SLIQ employs disk-resident attribute lists and a single memory-resident class list. The attribute lists

and class list generated by SLIQ for the tuple data of Table 6.2 are shown in Figure 6.8. Each attribute

has an associated attribute list, indexed by RID (a record identifier). Each tuple is represented by a

linkage of one entry from each attribute list to an entry in the class list (holding the class label of the

given tuple), which in turn is linked to its corresponding leaf node.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

The class list remains in memory because it is often accessed and modified in the building and pruning

phases. The size of the class list grows proportionally with the number of tuples in the training set.

When a class list cannot fit into memory, the performance of SLIQ decreases.

SPRINT

SPRINT uses a different attribute list data structure that holds the class and RID information, as shown

in Figure 6.9. When a node is split, the attribute lists are partitioned and distributed among the

resulting child nodes accordingly. When a list is partitioned, the order of the records in the list is

maintained. Hence, partitioning lists does not require resorting. SPRINT was designed to be easily

parallelized, further contributing to its scalability.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

RainForest

To further enhance the scalability of decision tree induction, a method called RainForest was

proposed. It adapts to the amount of main memory available and applies to any decision tree

induction algorithm. The method maintains an AVC-set (where AVC stands for “Attribute-Value,

Classlabel”) for each attribute, at each tree node, describing the training tuples at the node. The AVC-

set of an attribute A at node N gives the class label counts for each value of A for the tuples at N. Figure

6.10 shows AVC-sets for the tuple data of Table 6.1. The set of all AVC-sets at a node N is the AVC-

group of N. The size of an AVC-set for attribute A at node N depends only on the number of distinct

values of A and the number of classes in the set of tuples at N. Typically, this size should fit in memory,

even for real-world data

RainForest can use any attribute selection measure and was shown to be more efficient than earlier

approaches employing aggregate data structures, such as SLIQ and SPRINT.

Bootstrapped Optimistic Algorithm for Tree Construction

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction) is a decision tree algorithm that takes

a completely different approach to scalability—it is not based on the use of any special data structures.

Instead, it uses a statistical technique known as “bootstrapping” to create several smaller samples (or

subsets) of the given training data, each of which fits in memory

Rule-Based Classification

a. Using IF-THEN Rules for Classification

A rule-based classifier uses a set of IF-THEN rules for classification.

An IF-THEN rule is an expression of the form IF condition THEN conclusion.

An example is rule R1:

R1: IF age = youth AND student = yes THEN buys computer = yes.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or precondition. The

“THEN”-part (or right-hand side) is the rule consequent.

R1 can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys computer = yes)

b. Rule Extraction from a Decision Tree

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.

Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF” part).

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

A Multilayer Feed-Forward Neural Network

 A multilayer feed-forward neural network consists of an input layer, one or more hidden layers, and

an output layer. An example of a multilayer feed-forward network is shown in Figure 6.15.

Each layer is made up of units. The inputs to the network correspond to the attributes measured for

each training tuple. The inputs are fed simultaneously into the units making up the input layer.

These inputs pass through the input layer and are then weighted and fed simultaneously to a second

layer of “neuronlike” units, known as a hidden layer.

The outputs of the hidden layer units can be input to another hidden layer, and so on.

The weighted outputs of the last hidden layer are input to units making up the output layer, which

emits the network’s prediction for given tuples.

The network is feed-forward in that none of the weights cycles back to an input unit or to an output

unit of a previous layer. It is fully connected in that each unit provides input to each unit in the next

forward layer.

 Defining a Network Topology

Before training can begin, the user must decide on the network topology by specifying the number of

units in the input layer, the number of hidden layers (if more than one), the number of units in each

hidden layer, and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will help speed up the

learning phase. Typically, input values are normalized so as to fall between 0.0 and 1.0.

There are no clear rules as to the “best” number of hidden layer units. Network design is a trial-and-

error process and may affect the accuracy of the resulting trained network. The initial values of the

weights may also affect the resulting accuracy.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Backpropagation

For each training tuple, the weights are modified so as to minimize the mean squared error between

the network’s prediction and the actual target value. These modifications are made in the

“backwards” direction, that is, from the output layer, through each hidden layer down to the first

hidden layer (hence the name backpropagation.

Initialize the weights: The weights in the network are initialized to small random numbers (e.g.,

ranging from −1.0 to 1.0, or −0.5 to 0.5).

Propagate the inputs forward:

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Example Problem:

X = (1, 0, 1), whose class label is 1.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

Questions:

1. Explain about scalability in decision tree induction

2. Explain about repetition and replication in decision tree induction

3. A classifier is classifying 180 patterns out of 200 patterns correctly. What is its

misclassification rate.

4. Why is tree pruning useful in decision tree induction? What is a drawback of using

a separate set of tuples to evaluate pruning?

5. Explain about rule-based classification.

6. What is data classification

7. Write back propagation algorithm.

8. Explain back propagation classification

9. What are the evaluation criteria for classification and prediction

10. A classifier is classifying 90 patterns out of 110 patterns correctly. What is its

accuracy.

11. Explain about the following

a. Random subsampling

b. Cross-validation method

c. Boot strap method

12.

Module 4 E-Content Prepared By Dr. K Rajendra Prasad

13. What is bayes theorem

14. What are the issues in classification and prediction?

15. What is instance-based learners

16. Explain how the Bayesian belief networks is differing in naïve Bayesian classification.

17. Define information gain

18. What is boosting. Explain in detail why it may improve the accuracy of a decision

tree.

